Featured Post

List of Questions and link to solutions

Chapter 1: Vector Analysis Problem 1.1: Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross product are distributive, a) when the three vectors are co-planar. b) in the general case.  Solution   Problem 1.2 Is the cross product associative? (A×B)×C=?A×(B×C) If so, prove it; if not, provide a counterexample (the simpler the better). Solution   Problem 1.3 Find the angle between the body diagonals of a cube.  Solution Problem 1.4 Use the cross product to find the components of the unit vector n^ perpendicular to the shaded plane in Fig. 1.11. Solution   Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component form. Solution Problem 1.6 Prove that [A×(B×C)]+[B×(C×A)]+[C×(A×B)]=0 Under what conditions does $\vec{A}...

Chapter 2 Electrostatics: Problem 2.12

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged
solid sphere (charge density ρ). Compare your answer to Prob. 2.8.

Solution:


 

 

 

 

 

 

 

 

 

 

Consider a gaussian spherical surface of radius r where rR 

According to Gauss Law,

Eda=Qencϵ0=ρ×43πR3ϵ0 

Since the charge distribution is symmetrical, E and da point in the same direction r^ 

E×4πr2=ρ×43πR3ϵ0 

E=ρ×R33ϵ0r2r^ 

Now, For r<R,Qenc=ρ×43πr3 

E×4πr2=ρ×43πr3ϵ0 

E=ρ×r3ϵ0r^

Hence,

For r<R,E=ρ×r3ϵ0r^ 

For rR,E=ρ×R33ϵ0r2r^ 


If you have any doubt regarding the solution or you want solution of some problem which is not posted please let me know by commenting. This encourages me to answer more question because sometime it feels like all I am doing is just a waste. If it helps someone I will be happy to do it.

Comments

Popular posts from this blog

Chapter 1 Vector Analysis: Problem 1.12

List of Questions and link to solutions

Chapter 1 Vector Analysis: Problem 1.16