Featured Post
Chapter 1 Vector Analysis: Problem 1.6
- Get link
- X
- Other Apps
Problem 1.6 Prove that
$$[\vec{A}\times (\vec{B}\times \vec{C})]+[\vec{B}\times (\vec{C}\times \vec{A})]+[\vec{C}\times (\vec{A}\times \vec{B})] = 0$$
Under what conditions does $\vec{A}\times (\vec{B}\times \vec{C}) = (\vec{A}\times \vec{B})\times \vec{C}$?
Solution:
Note That:
$$\vec{A}\times (\vec{B}\times \vec{C}) = (\vec{A}\cdot \vec{C})\vec{B} - (\vec{A}\cdot \vec{B})\vec{C}$$
Consider,
$$[\vec{A}\times (\vec{B}\times \vec{C})]+[\vec{B}\times (\vec{C}\times \vec{A})]+[\vec{C}\times (\vec{A}\times \vec{B})]$$
$$ = [(\vec{A}\cdot \vec{C})\vec{B}-(\vec{A}\cdot \vec{B})\vec{C}] + [(\vec{B}\cdot \vec{A})\vec{C}-(\vec{B}\cdot \vec{C})\vec{A}]+ [(\vec{C}\cdot \vec{B})\vec{A}-(\vec{C}\cdot \vec{A})\vec{B}]$$
Using the commutative property of dot product i.e $\vec{A}\cdot \vec{B} = \vec{B}\cdot \vec{A}$
$$[\vec{A}\times (\vec{B}\times \vec{C})]+[\vec{B}\times (\vec{C}\times \vec{A})]+[\vec{C}\times (\vec{A}\times \vec{B})] = \vec{0}$$
Say $\vec{A}\times (\vec{B}\times \vec{C}) = (\vec{A}\times \vec{B})\times \vec{C}$
$$\vec{A}\times (\vec{B}\times \vec{C}) = -\vec{C}\times (\vec{A}\times \vec{B})$$
$$(\vec{A}\cdot \vec{C})\vec{B} - (\vec{A}\cdot \vec{B})\vec{C} = -[(\vec{C}\cdot \vec{B})\vec{A} - (\vec{C}\cdot \vec{A})\vec{B}]$$
$$(\vec{A}\cdot \vec{C})\vec{B} - (\vec{A}\cdot \vec{B})\vec{C} = -(\vec{C}\cdot \vec{B})\vec{A} + (\vec{C}\cdot \vec{A})\vec{B}$$
$$(\vec{A}\cdot \vec{B})\vec{C} = (\vec{C}\cdot \vec{B})\vec{A}$$
This is possible when
- $\vec{A}$ and $\vec{C}$ are parallel (Check For yourself taking $\vec{A} = m\vec{C}$)
- $\vec{B}$ is perpendicular to both vector $\vec{A}$ and $\vec{C}$ i.e $\vec{A}\cdot \vec{B} = \vec{C}\cdot \vec{B} = 0$
If you have any doubt regarding the solution or you want solution of some problem which is not posted please let me know by commenting. This encourages me to answer more question because sometime it feels like all I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment