Featured Post
Chapter 1 Vector Analysis: Problem 1.54
- Get link
- X
- Other Apps
Problem 1.54: Check the divergence theorem for the function
$$v = r^2\cos\theta\hat{r} + r^2\cos \phi \hat{θ} − r^2 \cos\theta \sin \phi \hat{\phi}$$ ,
using as your volume one octant of the sphere of radius $R$ (Fig. 1.48). Make sure
you include the entire surface.
Solution:
Divergence Theorem States That for a verctor $\vec{v}$,
$$\int_V (\vec{\triangledown}\cdot \vec{v})d\tau = \oint_S \vec{v}\cdot d\vec{a}$$
Let's consider the octant where $r$ varies from $0$ to $R$, $\theta$ varies from $0$ to $\pi\over 2$ and $\phi$ varies from $0$ to $\pi\over 2$
Given $$\vec{v} = r^2cos\theta \hat{r} + r^2 cos\phi\hat{\theta} - r^2 cos\theta sin\phi \hat{\phi} $$ $$\vec{\triangledown}\cdot \vec{v} = \frac{1}{r^2 sin\theta}\big[\frac{\partial}{\partial r}(r^2sin\theta \cdot r^2 cos\theta) + \frac{\partial}{\partial \theta}(rsin\theta \cdot r^2 cos\phi) + \frac{\partial}{\partial \phi} (r\cdot (-r^2 cos\theta sin\phi))\big]$$ $$\vec{\triangledown}\cdot \vec{v} = \frac{1}{r^2 sin\theta}\big[ sin\theta cos\theta 4r^3+ r^3cos\phi cos\theta -r^3 cos\theta cos\phi\big]$$ $$\vec{\triangledown}\cdot \vec{v} = 4rcos\theta$$ $$\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = \int_{vol.} 4rcos\theta \cdot r^2 sin\theta dr d\theta d\phi $$ $$\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = 4\times \int_0^R r^3 dr\times \int_0^{\pi \over 2} cos\theta sin\theta d\theta \times \int_0^{\pi \over 2} d\phi$$ $$\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = 4\times \frac{R^4}{4}\times \frac{1}{2} \times \frac{\pi}{2} = \frac{1}{4} \pi R^4$$ Divide the surface into 4 parts where $S_1$ represents the part on the on the $xy$ plane. Hence $\theta = \pi/2$ $$\int_{S_1} \vec{v}\cdot \vec{da} = \int_{S_1} (r^2 cos\phi \hat{\theta})\cdot (r dr d\phi \hat{\theta})$$ $$\int_{S_1} \vec{v}\cdot \vec{da} = \int_0^R r^3 dr \int_0^{\pi/2} cos\phi d\phi$$ $$\int_{S_1} \vec{v}\cdot \vec{da} = \frac{R^4}{4} \times 1 = \frac{1}{4} R^4$$ $S_2$ represents the part on the on the $yz$ plane. Hence $\phi = \pi/2$ $$\int_{S_2} \vec{v}\cdot \vec{da} = \int_{S_2} (r^2 cos\theta \hat{r} - r^2 cos\theta \hat{\phi})\cdot (r dr d\theta \hat{\phi})$$ $$\int_{S_2} \vec{v}\cdot \vec{da} = \int_{S_2} - r^3 cos\theta dr d\theta $$ $$\int_{S_2} \vec{v}\cdot \vec{da} = -\int_0^R r^3 dr \int_0^{\pi/2} cos\theta d\theta$$ $$\int_{S_2} \vec{v}\cdot \vec{da} = -\frac{R^4}{4} \times 1 = -\frac{1}{4} R^4$$ $S_3$ represents the part on the on the $xz$ plane. Hence $\phi = 0$ $$\int_{S_3} \vec{v}\cdot \vec{da} = \int_{S_3} (r^2 cos\theta \hat{r} + r^2 cos\phi \hat{\theta})\cdot (-r dr d\theta \hat{\phi}) = 0$$ $S_4$ represents the curved part of the sphere . Hence $r = R$ $$\int_{S_4} \vec{v}\cdot \vec{da} = \int_{S_4} (R^2 cos\theta \hat{r} + R^2 cos\phi \hat{\theta}-R^2 cos\theta sin\phi \hat{\phi})\cdot (R^2 sin\theta d\theta d\phi \hat{r})$$ $$\int_{S_4} \vec{v}\cdot \vec{da} = \int_{S_4} (R^4 cos\theta sin\theta d\theta d\phi)$$ $$\int_{S_4} \vec{v}\cdot \vec{da} = R^4\int_0^{\pi /2} cos\theta sin\theta d\theta \int_0^{\pi/2} d\phi$$ $$\int_{S_4} \vec{v}\cdot \vec{da} = R^4\times \frac{1}{2} \times \frac{\pi}{2} = \frac{1}{4}\pi R^4$$ Hence,$$\oint_S \vec{v}\cdot \vec{da}= \int_{S_1}\vec{v}\cdot \vec{da}+\int_{S_2}\vec{v}\cdot \vec{da}+\int_{S_3}\vec{v}\cdot \vec{da}+\int_{S_4}\vec{v}\cdot \vec{da}$$ $$\oint_S \vec{v}\cdot \vec{da}= \frac{1}{4}\pi R^4$$ Therefore, $$\int_{vol.} (\vec{\triangledown}\cdot \vec{v})d\tau = \oint_S \vec{v}\cdot\vec{da}$$
Hence divergence theorem is verified
If
you have any doubt regarding the solution or you want solution of some
problem which is not posted please let me know by commenting. This
encourages me to answer more question because sometime it feels like all
I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment