Featured Post
Chapter 1 Vector Analysis: Problem 1.55
- Get link
- X
- Other Apps
Problem 1.55: Check Stokes’ theorem using the function $v = ay\vec{x} + bx \vec{y}$ ($a$ and $b$ are constants) and the circular path of radius $R$, centered at the origin in the $xy$ plane.
Solution:
Stokes Theorem States That for a vector $\vec{v}$,
$$\int_S (\vec{\nabla} \times \vec{v})\cdot d\vec{a} = \oint_P \vec{v}\cdot d\vec{l}$$
Given function is $$\vec{v} = ay\hat{x} + bx\hat{y} $$ where $a$ and $b$ are constants.
The path given is a circular path of radius $R$ in the $xy$ plane.
In Cartesian coordinate System $$\vec{da} = dxdy\hat{z}$$
and
$$\vec{dl} = dx\hat{x} + dy\hat{y}$$
$$ (\vec{\nabla} \times \vec{v})= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ ay & bx & 0 \end{vmatrix}$$ $$\qquad \quad \space = \hat{x}(\frac{\partial}{\partial{y}} (0)- \frac{\partial}{\partial{z}} (x)) - \hat{y}(\frac{\partial}{\partial{x}} (0) - \frac{\partial}{\partial{z}} (ay))+\hat{z}(\frac{\partial}{\partial{x}} (bx) - \frac{\partial}{\partial{y}} (ay))$$
$$\qquad \quad \space = \hat{z}(b-a)$$
And hence
$$\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=\int_S (b-a)\hat{z}\cdot dxdy\hat{z}$$
Since $(b-a)$ is constant
$$\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=(b-a)\int_S dxdy$$
For the given surface
$$\int_S dxdy = \pi R^2$$
Hence,
$$\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=\pi R^2 \qquad ...(i)$$
$$\oint_C \vec{v}.\vec{dl} = \oint_C (ay\hat{x} + bx\hat{y})\cdot (dx\hat{x}+dy\hat{y})$$ $$\oint_C \vec{v}.\vec{dl} = \oint_C (aydx + bxdy)$$
For computing the line integral, Let's divide the circle in upper half $C_1$ and lower half $C_2$. For upper half, $$y = \sqrt{R^2-x^2}$$ and for lower half $$y = -\sqrt{R^2-x^2}$$
Let's compute the line integral for upper half first,
$$dy = \frac{1}{2\sqrt{R^2-x^2}}(-2x)dx = \frac{-x}{\sqrt{R^2-x^2}}dx$$ So, $$\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} (a\sqrt{R^2-x^2}dx+bx(\frac{-x}{\sqrt{R^2-x^2}}))dx$$ $$\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} \frac{(a(R^2-x^2)-{bx^2})}{\sqrt{R^2-x^2}}dx$$ $$\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} \frac{aR^2-(a+b)x^2}{\sqrt{R^2-x^2}}dx$$ Since the Counterclockwise direction is considered to be positive,
$\therefore x $ varies from $R$ to $-R$. $$\int_{C_1}\vec{v}.\vec{dl}=\int_{R}^{-R} (\frac{aR^2}{\sqrt{R^2-x^2}} - \frac{(a+b)x^2}{\sqrt{R^2-x^2}} )dx$$ $$\int_{C_1}\vec{v}.\vec{dl}=\big\{ {aR^2}.sin^{-1}({x\over R}) - (a+b)\big [{-x\over 2} \sqrt{R^2-x^2}+{R^2\over 2} sin^{-1}({x\over R})\big ]\big \}_R^{-R}$$ $$\int_{C_1}\vec{v}.\vec{dl}=\big\{ \frac{1}{2}(a-b)R^2sin^{-1}({x\over R})\big \}_R^{-R} \qquad \because \int_R^{-R} \frac{-x}{2}\sqrt{R^2-x^2}=0$$ $$\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(a-b)sin^{-1}({-R\over R}) - \frac{1}{2}R^2(a-b)sin^{-1}({R\over R})$$ $$\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(a-b)({-\pi \over 2}-{\pi \over 2})$$ $$\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(b-a)\pi$$ For the second integral, $$dy = -\frac{1}{2\sqrt{R^2-x^2}}(-2x)dx = \frac{x}{\sqrt{R^2-x^2}}dx$$ $$\int_{C_2}\vec{v}.\vec{dl}=\int_{C_2} (a(-\sqrt{R^2-x^2})dx+bx(\frac{x}{\sqrt{R^2-x^2}})dx)$$ $$\int_{C_2}\vec{v}.\vec{dl}=\int_{C_2} \frac{-aR^2+(a+b)x^2}{\sqrt{R^2-x^2}}dx$$ Here $x$ varies from $-R$ to $R$ and hence $$\int_{C_2}\vec{v}.\vec{dl}=\int_{-R}^{R} \frac{-aR^2+(a+b)x^2}{\sqrt{R^2-x^2}}dx$$ Reversing the limits we get, $$\int_{C_2}\vec{v}.\vec{dl}=\int_{R}^{-R} \frac{aR^2-(a+b)x^2}{\sqrt{R^2-x^2}}dx = \int_{C_1}\vec{v}.\vec{dl}$$ and hence $$\oint_C \vec{v}\cdot \vec{dl} =\frac{1}{2}R^2(b-a)\pi + \frac{1}{2}R^2(b-a)\pi $$ $$\oint_C \vec{v}\cdot \vec{dl} =\pi R^2(b-a)$$ Hence stokes theorem is proved.
If
you have any doubt regarding the solution or you want solution of some
problem which is not posted please let me know by commenting. This
encourages me to answer more question because sometime it feels like all
I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment