Featured Post
Chapter 1 Vector Analysis: Problem 1.27
- Get link
- X
- Other Apps
Problem 1.27: Prove that the divergence of a curl is always zero. Check it for function
$v_a$ in Prob. 1.15. ($v_a = x^2\hat{x} + 3xz^2\hat{y} - 2xz\hat{z}$)
Answer:
Consider a vector function $$\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k}$$
To show $$\vec{\triangledown}\cdot (\vec{\triangledown} \times \vec{F}) = 0$$
Points To Remember:
$$\vec{\triangledown}\cdot \vec{F} = \frac{\partial}{\partial x}(F_x) + \frac{\partial}{\partial y}(F_y) + \frac{\partial}{\partial z}(F_z) $$
And $$\vec{\triangledown} \times \vec{F} = \begin{vmatrix} \hat{i} && \hat{j} && \hat{k} \\ {\partial \over \partial x} && {\partial \over \partial y} && {\partial \over \partial z}\\ F_x && F_y && F_z \end{vmatrix}$$
Consider, $$\vec{\triangledown} \times \vec{F} = \begin{vmatrix} \hat{i} && \hat{j} && \hat{k} \\ {\partial \over \partial x} && {\partial \over \partial y} && {\partial \over \partial z}\\ F_x && F_y && F_z \end{vmatrix}$$ $$\vec{\triangledown} \times \vec{F} = \hat{i}\big( {\partial \over \partial y} F_z - {\partial \over \partial z} F_y\big) + \hat{j}\big( {\partial \over \partial z} F_x - {\partial \over \partial x} F_z\big)+ \hat{k}\big( {\partial \over \partial x} F_y - {\partial \over \partial y} F_x\big) $$
Now, $$\vec{\triangledown}\cdot (\vec{\triangledown} \times \vec{F}) = {\partial \over \partial x}\big( {\partial \over \partial y} F_z - {\partial \over \partial z} F_y\big) + {\partial \over \partial y}\big( {\partial \over \partial z} F_x - {\partial \over \partial x} F_z\big) + {\partial \over \partial z}\big( {\partial \over \partial x} F_y - {\partial \over \partial y} F_x\big) = 0$$
For
$$\vec{v_a} = x^2 \hat{i} + 3xz^2 \hat{j} − 2xz\hat{k}$$
$$\vec{\triangledown} \times \vec{v_a} = -6xz \hat{i} + 2z\hat{j} + 3z^2\hat{k}$$ $${\vec{\triangledown}}\cdot ({\vec{\triangledown}\times \vec{v_a}}) = -6z + 0 + 6z = 0$$ Hence, Divergence of curl is always zero.
If
you have any doubt regarding the solution or you want solution of some
problem which is not posted please let me know by commenting. This
encourages me to answer more question because sometime it feels like all
I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment