Featured Post
Chapter1 Vector Analysis: Problem 1.18
- Get link
- X
- Other Apps
Problem 1.18 Calculate the CURL of the following vector functions:
(a) $v_a = x^2\hat{i}+3xz^2\hat{j}-2xz\hat{k}$
(b) $v_b = xy\hat{i}+2yz\hat{j}+3zx\hat{k}$
(c) $v_c = y^2\hat{i}+(2xy+z^2)\hat{j}+2yz\hat{k}$
Solution:
Here's the link on "How to calculate curl in different coordinate system?"
(a) $v_a = x^2\hat{i}+3xz^2\hat{j}-2xz\hat{k}$
$$\vec{\nabla}\times \vec{v_a} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & 3xz^2 & (-2xz) \end{bmatrix}$$
$\vec{\nabla}\times \vec{v_a} = \big[\frac{\partial }{\partial y}(-2xz) - \frac{\partial}{\partial z}(3xz^2)\big]\hat{i}- \big[\frac{\partial }{\partial x}(-2xz) - \frac{\partial}{\partial z}(x^2)\big]\hat{j}+ \big[\frac{\partial }{\partial x}(3xz^2) - \frac{\partial}{\partial y}(x^2)\big]\hat{k}$
$$\vec{\nabla}\times \vec{v_a} = 6xz\hat{i}+2z\hat{j}+ 3z^2\hat{k}$$
(b) $v_b = xy\hat{i}+2yz\hat{j}+3zx\hat{k}$
$$\vec{\nabla}\times \vec{v_b} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & 2yz & 3zx\end{bmatrix}$$
$\vec{\nabla}\times
\vec{v_b} = \big[\frac{\partial }{\partial y}(3zx) -
\frac{\partial}{\partial z}(2yz)\big]\hat{i}- \big[\frac{\partial
}{\partial x}(3zx) - \frac{\partial}{\partial z}(xy)\big]\hat{j}+
\big[\frac{\partial }{\partial x}(2yz) - \frac{\partial}{\partial
y}(xy)\big]\hat{k}$
$$\vec{\nabla}\times \vec{v_b} = -2y\hat{i}-3z\hat{j}-x\hat{k}$$
(c) $v_c = y^2\hat{i}+(2xy+z^2)\hat{j}+2yz\hat{k}$
$$\vec{\nabla}\times \vec{v_c} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & (2xy+z^2) & 2yz\end{bmatrix}$$
$\vec{\nabla}\times
\vec{v_c} = \big[\frac{\partial }{\partial y}(2yz) -
\frac{\partial}{\partial z}(2xy+z^2)\big]\hat{i}- \big[\frac{\partial
}{\partial x}(2yz) - \frac{\partial}{\partial z}(y^2)\big]\hat{j}+
\big[\frac{\partial }{\partial x}(2xy+z^2) - \frac{\partial}{\partial
y}(y^2)\big]\hat{k}$
$$\vec{\nabla}\times \vec{v_c} = (2z-2z)\hat{i}-0\hat{j}-(2y-2y)\hat{k} = 0\hat{i}+0\hat{j}+0\hat{k}$$
If you have any doubt regarding the solution or you want solution of some problem which is not posted please let me know by commenting. This encourages me to answer more question because sometime it feels like all I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment