Featured Post
Calculate CURL in different Coordinate Systems.
- Get link
- X
- Other Apps
How to calculate CURL in various Coordinate Systems?
Curl of a vector function $\vec{F} = F_u\hat{u}+F_v\hat{v}+F_w\hat{w}$ in a coordinate system where $\vec{dl} = f du\hat{u}+gdv\hat{v}+hdw\hat{w}$ is given by:
$$\vec{\nabla}\times \vec{F} = \frac{1}{fgh} \begin{bmatrix} f\hat{u} & g\hat{v} & h\hat{w} \\ \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\ fF_u & gF_v & hF_w \end{bmatrix}$$In Cartesian Coordinate System:
$$\vec{dl} = dx\hat{i}+dy\hat{j}+dz\hat{k}$$
$$f=1, g=1, h=1$$
$$\vec{\nabla}\times \vec{F} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{bmatrix}$$
In Cylindrical Coordinate System:
$$\vec{dl}
= ds\hat{s}+sd\phi\hat{\phi}+dz\hat{k}$$
$$f=1, g=s, h=1$$
$$\vec{\nabla}\times \vec{F} = \frac{1}{s} \begin{bmatrix} \hat{s} & s\hat{\phi} & \hat{z} \\ \frac{\partial}{\partial s} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ F_s & sF_{\phi} & F_z\end{bmatrix}$$
In Spherical Coordinate System:
$$\vec{dl} = dr\hat{r}+rd\theta\hat{\theta}+r\sin\theta d\phi\hat{\phi}$$
$$f=1, g=r, h=r\sin\theta$$
$$\vec{\nabla}\times \vec{F} = \frac{1}{r^2\sin\theta} \begin{bmatrix} \hat{r} & r\hat{\theta} & r\sin\theta\hat{\phi} \\ \frac{\partial}{\partial s} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ F_r & rF_{\theta} & r\sin\theta F_{\phi}\end{bmatrix}$$
If
you have any doubt regarding the solution or you want solution of some
problem which is not posted please let me know by commenting. This
encourages me to answer more question because sometime it feels like all
I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment