Featured Post
Chapter 1 Vector Analysis: Problem 1.11
- Get link
- X
- Other Apps
Problem 1.11 Find the gradients of the following functions:
(a) $f(x,y,z) = x^2+y^3+z^4$
(b) $f(x,y,z) = x^2y^3z^4$
(c) $f(x,y,z) = e^x\sin(y)\ln(z)$
Solution:
Gradient of a function $F$ in a coordinate system where $\vec{dl} = f du\hat{u}+gdv\hat{v}+hdw\hat{w}$ is given by:
$$\vec{\nabla}F = \frac{1}{f} \frac{\partial F}{\partial u}\hat{u}+\frac{1}{g}\frac{\partial F}{\partial v}\hat{v}+\frac{1}{h}\frac{\partial F}{\partial w}\hat{w}$$
In Cartesian Coordinate System:
$$\vec{dl} = dx\hat{i}+dy\hat{j}+dz\hat{k}$$
$$\vec{\nabla} F = \frac{\partial F}{\partial x}\hat{i}+\frac{\partial F}{\partial y}\hat{j}+\frac{\partial F}{\partial z}\hat{k}$$
In Cylindrical Coordinate System:
$$\vec{dl} = ds\hat{s}+sd\phi\hat{\phi}+dz\hat{k}$$$$\vec{\nabla} F = \frac{\partial F}{\partial s}\hat{s}+\frac{1}{s}\frac{\partial F}{\partial \phi}\hat{\phi}+\frac{\partial F}{\partial z}\hat{z}$$
In Spherical Coordinate System:
$$\vec{dl} = dr\hat{r}+rd\theta\hat{\theta}+r\sin\theta d\phi\hat{\phi}$$$$\vec{\nabla}
F = \frac{\partial F}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial
F}{\partial \theta}\hat{\theta}+\frac{1}{r\sin\theta}\frac{\partial F}{\partial \phi}\hat{\phi}$$
Now, coming to the question. All the functions are given in cartesian coordinate system.
(a) $f(x,y,z) = x^2+y^3+z^4$
$$\vec{\nabla} f = \frac{\partial (x^2+y^3+z^4)}{\partial x}\hat{i}+\frac{\partial (x^2+y^3+z^4)}{\partial y}\hat{j}+\frac{\partial (x^2+y^3+z^4)}{\partial z}\hat{k}$$
$$\vec{\nabla} f = 2x\hat{i}+3y^2\hat{j}+4z^3\hat{k}$$
(b) $f(x,y,z) = x^2y^3z^4$
$$\vec{\nabla} f = \frac{\partial (x^2y^3z^4)}{\partial x}\hat{i}+\frac{\partial (x^2y^3z^4)}{\partial y}\hat{j}+\frac{\partial (x^2y^3z^4)}{\partial z}\hat{k}$$
$$\vec{\nabla} f = 2xy^3z^4\hat{i}+x^23y^2z^4\hat{j}+x^2y^34z^3\hat{k}$$
(c) $f(x,y,z) = e^x\sin(y)\ln(z)$
$$\vec{\nabla} f = \frac{\partial (e^x\sin(y)\ln(z))}{\partial x}\hat{i}+\frac{\partial (e^x\sin(y)\ln(z))}{\partial y}\hat{j}+\frac{\partial (e^x\sin(y)\ln(z))}{\partial z}\hat{k}$$
$$\vec{\nabla} f = e^x\sin(y)\ln(z)\hat{i}+e^x\cos(y)\ln(z)\hat{j}+\frac{e^x\sin(y)}{z}\hat{k}$$
If you have any doubt regarding the solution or you want solution of some problem which is not posted please let me know by commenting. This encourages me to answer more question because sometime it feels like all I am doing is just a waste. If it helps someone I will be happy to do it.
- Get link
- X
- Other Apps
Comments
Post a Comment